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Abstract. The algorithmic method introduced by Fokas and Ablowitz to investigate the
transformation properties of Painlevé equations is used to obtain one-to-one correspondence
between the Painlevé IV, V and VI equations and the second-order second-degree equations of
Painlev́e type.

1. Introduction

Painlev́e and his school addressed a question raised by Picard concerning second-order
first-degree ordinary differential equations of the form

y ′′ = F(z, y, y ′) (1.1)

whereF is rational iny ′, algebraic iny and locally analytic inz, which have the property
that singularities other than poles of any of the solutions are fixed [22, 15, 17]. This
property is known as the Painlevé property. Within the M̈obius transformation, Painlevé
and his colleagues found that there are 50 canonical equations of the form (1.1). Among
these equations six are irreducible and define classical Painlevé transendents PI–PVI. These
may be regarded as nonlinear counterparts of some of the classical special functions. For
example, PIII has solutions which have similar properties to the Bessel functions. The
solutions of the 11 equations of the remaining 44 equations can be expressed in terms of
the solutions of the Painlevé equations PI, PII, or PIV and 33 equations are solvable in
terms of the linear equations of order two or three, or are solvable in terms of the elliptic
functions.

Although the Painlev́e equations were discovered from strictly mathematical
considerations they have appeared in many physical problems. Besides their physical
importance, the Painlevé equations possess a rich internal structure. Some of these properties
can be summarized as follows. (i) For a certain choice of parameters PII–PVI admit one-
parameter families of solutions which are either rational or expressible in terms of the
classical transcendental functions. For example, PVI admits a one-parameter family of
solutions expressible in terms of hypergeometric functions [9]. (ii) There are transformations
(Bäcklund or Schlesinger) associated with PII–PVI, these transformations map the solution
of a given Painlev́e equation to the solution of the same equation but with different values
of parameters [11, 19, 20]. (iii) PI–PV can be obtained from PVI by the process of
contraction [17]. It is possible to obtain the associated transformations for PII–PV from
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the transformation for PVI. (iv) They can be obtained as the similarity reduction of the
nonlinear partial differential equations solvable by the inverse scattering transform (IST).
(v) PI–PVI can be considered as the isomonodromic conditions of suitable linear system of
ordinary differential equations with rational coefficients possessing both regular and irregular
singularities [18]. Moreover, the initial value problem of PI–PVI can be studied by using
the inverse monodromy transform (IMT) [12, 13, 21].

The Riccati equation is the only example for the first-order first-degree equation which
has the Painlev́e property. Before the work of Painlevé and his school, Fuchs [14, 17]
considered equations of the form

F(z, y, y ′) = 0 (1.2)

whereF is polynomial iny andy ′, and locally analytic inz, such that the movable branch
points are absent, that is, the generalization of the Riccati equation. Briot and Bouquet [17]
considered a subcase of (1.2), that is, first-order binomial equations of degreem ∈ Z+:

(y ′)m + F(z, y) = 0 (1.3)

whereF(z, y) is a polynomial of degree at most 2m in y. It was found that there are six
types of equation of the form (1.3). However, all these equations are either reducible to a
linear equation or solvable by means of elliptic functions [17]. Second-order binomial-type
equations of degreem > 3

(y ′′)m + F(z, y, y ′) = 0 (1.4)

whereF is polynomial iny andy ′ and locally analytic inz, were considered by Cosgrove
[4]. It was found that there are nine classes. Only two of these classes have arbitrary degree
m and the others have degree three, four and six. As in the case of first-order binomial-
type equations, all these nine classes are solvable in terms of the first, second and fourth
Painlev́e transcendents, elliptic functions or by quadratures. Chazy [3], Garnier [16] and
Bureau [1] considered third-order differential equations possessing the Painlevé property of
the following form

y ′′′ = F(z, y, y ′, y ′′) (1.5)

whereF is assumed to be rational iny, y ′, y ′′ and locally analytic inz. However, in [1]
the special form ofF(z, y, y ′, y ′′)

F (z, y, y ′, y ′′) = f1(z, y)y
′′ + f2(z, y)(y

′)2+ f3(z, y)y
′ + f4(z, y) (1.6)

where fk(z, y) are polynomials in y of degreek with analytic coefficients inz was
considered. In this class no new Painlevé transcendents were discovered and all of them
are solvable either in terms of the known functions or one of six Painlevé transcendents.

Second-order second-degree Painlevé-type equations of the following form

(y ′′)2 = E(z, y, y ′)y ′′ + F(z, y, y ′) (1.7)

whereE andF are assumed to rational iny andy ′ and locally analytic inz were the subject
of [2, 8]. In [2] the special case of (1.7)

y ′′ = M(z, y, y ′)+
√
N(z, y, y ′) (1.8)

was considered, whereM andN are polynomials of degree 2 and 4 respectively iny ′,
rational in y and locally analytic inz. Also, in this classification, no new Painlevé
transcendents were found. In [8], the special form,E = 0 and henceF polynomial in
y and y ′ of (1.7) was considered and six distinct classes of equations were obtained by
using the so-calledα-method. These classes were denoted by SD-I,. . . ,SD-VI and all are
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solvable in terms of the classical Painlevé transcendents (PI,. . . ,PVI), elliptic functions or
solutions of the linear equations.

Second-order second-degree equations of Painlevé type appear in physics [5–7].
Moreover, second-degree equations are also important in determining transformation
properties of the Painlevé equations [10, 11]. In [11], the aim was to develop an algorithmic
method to investigate the transformation properties of the Painlevé equations. However,
certain new second-degree equations of Painlevé type related to PIII and PVI were also
discussed. By using the same notation, the algorithm introduced in [11] can be summarized
as follows: letv(z) be a solution of any of the 50 Painlevé equations, as listed by Gambier
[15] and Ince [17], each of which takes the form

v′′ = P1(v
′)2+ P2v

′ + P3 (1.9)

whereP1, P2, P3 are functions ofv, z and a set of parametersα. The transformation i.e.
Lie-point discrete symmetry which preserves the Painlevé property of (1.9) of the form
u(z; α̂) = F(v(z;α), z) is the Mobius transformation

u(z; α̂) = a1(z)v + a2(z)

a3(z)v + a4(z)
(1.10)

wherev(z,α) solves (1.9) with the set of parametersα, andu(z; α̂) solves (1.9) with the
set of parameterŝα. Lie-point discrete symmetry (1.10) can be generalized by involving
the v′(z;α), i.e. the transformation of the formu(z; α̂) = F(v′(z;α), v(z, α), z). The only
transformation which containsv′ linearly is the one involving the Riccati equation, i.e.

u(z, α̂) = v
′ + av2+ bv + c
dv2+ ev + f (1.11)

wherea, b, c, d, e, f are functions ofz only. The aim is to finda, b, c, d, e, f such that
(1.11) define a one-to-one invertible map between solutionsv of (1.9) and solutionsu of
some second-order equation of the Painlevé type. Let

J = dv2+ ev + f Y = av2+ bv + c (1.12)

then differentiating (1.11) and using (1.9) to replacev
′′

and (1.11) to replacev
′
, one obtains,

Ju
′ = [P1J

2− 2dJv − eJ ]u2+ [−2P1JY + P2J + 2avJ + bJ
+2dvY + eY − (d ′v2+ e′v + f ′)]u+ [P1Y

2− P2Y

+P3− 2avY − bY + a ′v2+ b′v + c′ ]. (1.13)

There are two distinct cases.
(1) Find a, . . . , f such that (1.13) reduce to a linear equation forv,

A(u′, u, z)v + B(u′, u, z) = 0. (1.14)

Having determineda, . . . , f upon substitution ofv = −B/A in (1.11) one can obtain the
equation foru, which will be one of the 50 Painlevé equations.

(2) Find a, . . . , f such that (1.13) reduces to a quadratic equation forv,

A(u′, u, z)v2+ B(u′, u, z)v + C(u′, u, z) = 0. (1.15)

Then (1.11) yields an equation foru which is quadratic in the second derivative. As
mentioned before in [11] the aim is to obtain the transformation properties of PII–PVI.
Hence, case 1 for PII–PV, and case 2 for PVI was investigated.

In this article, we investigate the transformation of type 2 to obtain the one-to-one
correspondence between PIV, PV, PVI and the second-order second-degree Painlevé-type
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equations. Similar work has been carried out for PI, PII, PIII in [23]. Some of the second-
degree equations related to PIV–PVI has been obtained in [2, 8] without giving the relation
between the Painlevé equations but many of them have not been considered in the literature.
Instead of having the transformation of the form (1.11) which is linear inv′, one may use
the appropriate transformations related to

(v′)m +
m∑
j=1

Pj (z, v)(v
′)m−j m > 1 (1.16)

where Pj (z, v) is a polynomial inv, which satisfies the Fuchs theorem concerning the
absence of movable critical points [14, 17]. This type of transformation yields the
relation between the Painlevé equations PI–PVI and higher-order higher-degree Painlevé-
type equations. Throughout this article′ denotes the derivative with respect toz and .

denotes the derivative with respect tox.

2. Painlev́e IV

Let v(z) be a solution of the PIV equation,

v′′ = 1

2v
(v′)2+ 3

2
v3+ 4zv2+ 2(z2− α)v + β

v
. (2.1)

Then, for PIV the equation (1.13) takes the form

A4v
4+ A3v

3+ A2v
2+ A1v + A0 = 0 (2.2)

where

A4 = 3[d2u2− 2adu+ a2− 1]

A3 = 2[du′ + 2deu2+ (d ′ − 2ae − 2bd)u− (a′ − 2ab + 4z)]

A2 = 2eu′ + (2df + e2)u2+ 2(e′ − af − be − cd)u− (2b′ − b2− 2ac + 4z2− 4α)

A1 = 2(f u′ + f ′u− c′) A0 = −(f 2u2− 2cf u+ c2+ 2β).

(2.3)

Now, the aim is to choosea, b, . . . , f so that (2.2) becomes a quadratic equation forv.
There are three cases: (1)A4 = A3 = 0, (2)A4 = 0, A3 6= 0 and (3)A4 6= 0.

Case 1. In this case the only possibility ise = d = 0, a2 = 1 andb = 2az. One can
always absorbc andf in u by a proper M̈obius transformation, and hence, without loss of
generality, one can setc = 0, andf = 1. Then equation (2.2) takes the following form,

2(au+ 2a − 2α)v2− 2u′v + u2+ 2β = 0. (2.4)

Following the procedure discussed in the introduction yields the following second-order
second-degree Painlevé-type equation foru(z)

[u′′ − 3au2− 4(a − α)u− 2aβ]2 = 4z2[u′2− 2(au+ 2a − 2α)(u2+ 2β)] (2.5)

and there exits the following one-to-one correspondence between solutionsv(z) of PVI and
solutionsu(z) of the equation (2.5)

u = v′ + av2+ 2azv v = −u
′′ − 2azu′ − 3au2− 4(a − α)u− 2aβ

4az(au+ 2a − 2α)
. (2.6)
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The change of variableu(z) = 4ay(x), x = a
√

2 z transforms equation (2.5) into the
equation (

ÿ − 1

2

∂Q3(y)

∂y

)2

= x2[ẏ2−Q3(y)]

Q3(y) := 4y3+ 2(a − α)y2+ 1
2βy + 1

4β(a − α).
(2.7)

Equation (2.7) was first obtained by Bureau [2, equation 19.2, p 207] without giving the
relation to PV and the special case,α = a, of (2.7) was solved in terms of the first Painlevé
transcendent. However, we have not been able to recover this relation.

Case 2.In this cased = 0, a2 = 1 and to reduce the equation (2.2) to a quadratic equation
for v one should takee 6= 0. Since one can always absorbb ande in u by a proper M̈obious
transformation, without loss of generality one may takeb = 0, e = 1. Now equation (2.2)
can be written as

(v + f )(Av2+ Bv + C) = 0 (2.8)

where

A = 4(au+ 2z) B = −[2u′ + u2− 2af u+ 2(ac + 4zf − 2z2+ 2α)]

C = f u2− 2(f ′ − af 2)u+ 2c′ + 2f (ac + 4zf − 2z2+ 2α)
(2.9)

andc, f satisfy the following equations

f (f ′ − af 2− c) = 0 2f [c′ + f (ac + 4zf − 2z2+ 2α)] = c2+ 2β. (2.10)

If f 6= 0, then equations (2.10) give

c = f ′ − af 2 f ′′ = 1

2f
(f ′)2+ 3

2
f 3− 4zf 2+ 2(z2− α)f + β

f
. (2.11)

Let µ = (−2β)1/2, andu(z) = ξ(z)y(x)+ η(z), x = ζ(z), where

η(z) = 1

f
(f ′ − af 2+ µ)

ξ(z) = exp

[
−
∫ z

{η(ẑ)+ af (ẑ)} dẑ
]

ζ(z) = − 1
2

∫ z

ξ(ẑ)dẑ.

(2.12)

Then one obtains the following second-order second-degree equation of Painlevé type for
y(x)

[4(y + a0)(ÿ − 2yẏ)− (ẏ − y2)2− P2(y)(ẏ − y2)−Q3(y)]
2

= = [ẏ − y2− R2(y)]
2[(ẏ − y2)2− S3(y)] (2.13)

where

P2(y) = 2p−2[3p2y2+ 2(p2a0− 2ah− 2pq)y − p2a2
0

−a0(7ah+ 8pq)+ 2α − aµ− 2a]

Q3(y) = 16p−2(y + a0)[hy
2+ (h+ 2µ)y + µ]

R2(y) = 2p−2[5p2y2+ 2p(3pa0+ 2q)y + p2a2
0

+(4pq − ah)a0− 2α + aµ+ 2a]

S3(y) = 16ap−2y(y + a0)(hy + 2µ).

(2.14)
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The coefficients in equations (2.13) and (2.14) are given as follows

h = 2µx + ν |µ| + |ν| 6= 0 ν = constant

p(x) := ξ(z) q(x) := η(z) a0 := 1

ξ(z)
[η(z)+ 2az].

(2.15)

The functionsp(x), q(x), anda0(x) satisfy the following equations

pṗ − 2(pq + ah) = 0 pq̇ + p2a2
0 − 2(pq + 2h)a0− 2(aµ− 2α) = 0

p2(ȧ0+ a2
0)− aha0− 2α + aµ+ 2a = 0.

(2.16)

The one-to-one correspondence between solutionsv(z) of the PIV and solutionsy(x) of the
equation (2.13) is given as follows

y = v′ + av2− ηv − µ
ξ(v + f ) 4a(y + a0)v

2+ p(ẏ − y2)v + y(hy + 2µ) = 0. (2.17)

If f = 0, then equation (2.10) givesc = (−2β)1/2. ThusC = 0 and equation (2.8)
gives a linear equation forv. Then one obtains the following transformation for the PIV
equation [11]

v̄ = 1

2v
[v′ − v2− 2zv − (−2β)1/2]

ᾱ = 1
4[2− 2α + 3(−2β)1/2] β̄ = − 1

2[1+ α + 1
2(−2β)1/2]2.

(2.18)

Case 3.In this case equation (2.2) can be written as follows

(v2+ g̃v + h̃)(B2v
2+ B1v + B0) = 0 (2.19)

whereBj , j = 1, 2, 3 are functions ofu′, u, z and g̃, h̃ are functions ofz only. One may
consider the two subcases (3.1)d = 0, and (3.2)d 6= 0 separately.

Case 3.1.If d = 0, then one must takef = g̃ = h̃ = 0 andc = µ,µ := (−2β)1/2. Since
e 6= 0 then without loss of generality one can takeb = 0, e = 1. The quadratic equation
for v becomes

3(a2− 1)v2− 2(au+ a′ + 4z)v + 2u′ + u2+ 2(µa − 2z2+ 2α) = 0. (2.20)

One may distinguish between the two casesa2+ 3= 0 anda2+ 3 6= 0.

Case 3.1.1.If a2 + 3= 0, then by using the change of variableu = 2(νy + 1
aν
x), x = νz,

where ν is a nonzero constant, one obtains the following second-order second-degree
equation of Painlev́e type fory(x)

[ÿ − λxẏ + (λ− 2λ2x2)y − 2κλx]2 = −4(y2+ σ)2(ẏ + λxy + κ) (2.21)

where

λ = −2

aν2
κ = 1

2ν2

(
2α + aµ+ 2

a

)
σ = 1

2ν2

(
2α − aµ− 2

a

)
. (2.22)
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The one-to-one correspondence between solutionsv(z) of the PIV and solutiony(x) of the
equation (2.21) is given by

y = av′ − 3v2− 2zv + aµ
2aνv

3v2+ 2aν(y − λx)v − ν2(ẏ + y2− λxy + λ2x2+ κ) = 0.
(2.23)

Equation (2.21) was first obtained by Cosgrove [8], and was labelled as SD-IV′.A.

Case 3.1.2.If a2+ 3 6= 0, let z = r(x), a(z) := s(x), andu(z) = p(x)y(x)+ q(x), where
p(x), q(x) andr(x) satisfy the following equations

p(s2+ 3)ṙ = 6(s2− 1) (s2+ 3)(ṗ − 2q) = 4s

(
ṡ

ṙ
+ 4r

)
(s2+ 3)(pq̇ − qṗ + q2) =

(
ṡ

ṙ
+ 4r

)2

− 6(s2− 1)(µs − 2r2+ 2α).

(2.24)

such that(s2− 1)(s2+ 3) 6= 0. Then the equations

py + q = v′ + av2+ µ
v

Av2+ Bv + C = 0 (2.25)

where

A = 3(s2− 1) B = −2

(
2spy + 2sq + ṡ

ṙ
+ 4r

)
C = 1

3(s2− 1)

[
p2(s2+ 3)ẏ + 3p2(s2− 1)y2

+4ps

(
2sq + ṡ

ṙ
+ 4r

)
y +

(
2sq + ṡ

ṙ

)2 ] (2.26)

give a one-to-one correspondence between solutionsv(z) of the PIV and solutionsy(x) of
the following second-order second-degree equation of Painlevé type

[ÿ + 2(y + a0)ẏ − 4y2(y + a0)]
2 = −16

(s2+ 3)2
[s(s2− 9)y2+ c1y + c0]2(ẏ − y2). (2.27)

The functionsa0, c1, c0 are given in terms of the functionsp(x), q(x), r(x) ands(x) as
follows

a0 = 1

p(s2+ 3)

[
2q(s2+ 3)+ s(s

2− 9)

6(s2− 1)
pṡ + 16rs

]
c1 = 2

p
[sq(s2− 9)− 2r(5s2+ 3)] + (s2+ 3)2

6(s2− 1)
ṡ

c0 = − (s2+ 3)2

12(s2− 1)
s̈ + s(s

2+ 3)(s2+ 15)

18(s2− 1)2
(ṡ)2

− 1

p2
[sq2(s2− 9)− 4rq(5s2+ 3)− 32sr2]

+ 3

p2
(s2− 1)[µ(s2− 3)+ 4(sr2− αs + 1)].

(2.28)
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Case 3.2.If d 6= 0, then without lose of generality one can takea = 0, d = 1. Equation
(2.2) can be written as follows

(v2+ g̃v + f )(B2v
2+ B1v + B0) = 0 (2.29)

where

B2 = 3(u2− 1) B1 = 2u′ + (4e − 3g̃)u2− 4bu+ 3g̃ − 8z

B0 = 2(e − g̃)u′ + (e2− g̃2− f )u2+ 2(e′ + 2bg̃ − be − c)u
−(2b′ − b2+ 4z2− 4α)− g̃(3g̃ − 8z)+ 3f

(2.30)

andb, c, e, f, g̃ satisfy the following equations:

g̃(e − g̃) = 0 f (e − g̃) = 0

f (e′ + be − 2c) = 0 f + 2bf = g̃(e′ + be − c)
f (2b′ − b2+ 3e2− 8ze − 3f + 4z2− 4α) = c2+ 2β

g̃(2b′ − b2+ 3e2− 8ze + 4z2− 4α) = 2c′ + 2f (3e − 4z).

(2.31)

The following three subcases (3.2.1)f = g̃ = 0, (3.2.2)f = 0, g̃ 6= 0, (3.2.3)f 6= 0
may be considered separately.

Case 3.2.1. If f = g̃ = 0, then equation (2.31) givesc = µ,µ2 + 2β = 0. Let
z = r(x), u(z) = p(x)y(x)+q(x) wherep(x), q(x) andr(x) are solutions of the following
equations

pṙ = 1 ṗ = 2(t + sq) pq̇ = sq2+ 2tq − 3s + 4r (2.32)

and t (x) and s(x) are arbitrary functions. Moreover, definingb(z) := t (x), e(z) := s(x)
then the quadratic equation forv can be written as

3(y2+ 2a1y + a0)v
2+ 2(ẏ − sy2)v + (2c1y + c0) = 0 (2.33)

where

a1 = p−1q a0 = p−2(q2− 1) c1 = ṡ + p−1(ts − µ)
c0 = p−2[2pqc1− (2pṫ − t2− 8rs + 3s2+ 4r2− 4α)].

(2.34)

Assume thatc1 andc0 are not both zero, then equations (2.33) and

py + q = v′ + bv + c
v2+ ev (2.35)

give one-to-one correspondence between solutionsv(z) of the PIV and solutionsy(x) of
the following second-order second-degree Painlevè-type equation

[P3(y)(ÿ − 2syẏ − ṡy2)− 2Q2(y)(ẏ − sy2)2− R4(y)(ẏ − sy2)+ P3(y)F2(y)]
2

= [2F2(y)(ẏ − sy2)+G4(y)]
2[(ẏ − sy2)2− P3(y)] (2.36)
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where

P3(y) = 6(c1y
3+ g2y

2+ g1y + g0)

Q2(y) = 5c1y
2+ 2(g2+ 2a1c1)y + 3g1− 2a1c0

R4(y) = 3[3sc1y
4+ (ċ1+ 2sg2)y

3+ (ġ2+ sg1)y
2+ ġ1y + ġ0]

F2(y) = c1y
2− 2(g2− 4a1c1)y + 2g1− 3a1c0

G4(y) = 3

[
sc1y

4+
(
ċ1+ ṗ

p
c1+ 4sa1c1

)
y3

+
(
ġ2+ ṗ

p
g2− 4ȧ1c1+ 3sg1− 2sa1c0

)
y2

+
(
ġ1+ ṗ

p
g1− 2ȧ0c1− 2ȧ1c0+ 2sg0

)
y + ġ0+ ṗ

p
g0− ȧ0c0

]

(2.37)

and

g2 = 1
2(c0+ 4a1c1) g1 = a0c1+ a1c0 g0 = 1

2a0c0. (2.38)

Whenc1 = c0 = 0, one obtains

e′ + be − c = 0 2b′ − b2+ 3e2− 8ze + 4(z2− α) = 0 (2.39)

and equation (2.33) reduces to a linear equation forv. In this casew = u+1
u−1 solves PXLII

in [17, p 341].

Case 3.2.2.If f = 0, g 6= 0, then equation (2.31) givesg = e, and

c = (−2β)1/2 e′ + be − (−2β)1/2 = 0 2b′ − b2+ 3e2− 8ze + 4(z2− α) = 0.

(2.40)

In this case,B0 = 0 in equation (2.30) and equation (2.29) is linear inv, B2v + B1 = 0.
This case is the same as case 3.2.1 whenc1 = c0 = 0.

Case 3.2.3.If f 6= 0, then equation (2.31) givesg = e and

c = 1
2(e
′ + be) f ′ + 2bf − ce = 0 f [2c′ + f (3e − 8z)] = e(c2+ 2β)

f (2b′ − b2+ 3e2− 8ze − 3f + 4z2− 4α) = c2+ 2β.
(2.41)

Note that if e = 0, then equations (2.41) implyc = 0, f = 0 which contradicts
the assumptionf 6= 0, thus one has to takee 6= 0. Let µ = (−2β)1/2 and let
u(z) = ξ(z)y(x)+ η(z), x = ζ(z), where

ξ(z) = exp

[
−
∫ z f ′(ẑ)+ µe(ẑ)

f (ẑ)
dẑ

]
ζ(z) = −1

2

∫ z

ξ(ẑ)e(ẑ) dẑ

η(z) = 1

2f
(e′ + be + 2µ).

(2.42)

Then the equation (2.29) can be written as

3[py2+ 2qy + p−1(q2− 1)]v2− s(ẏ − y2)v − y(hy + 2µ) = 0 (2.43)
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where

h(x) = 2µx + ν |µ| + |ν| 6= 0 ν = constant

p(x) := ξ(z) q(x) := η(z) s(x) := ξ(z)e(z). (2.44)

Equation (2.43) and

y = v′ − ηv2− (eη − b)v − µ
ξ(v2+ ev + f ) (2.45)

give one-to-one correspondence between solutionsv(z) of the PIV and solutionsy(x) of
the following second-order second-degree Painlevé equation

[F2(y)(ÿ − 2yẏ)− 2(py + q)(ẏ − y2)2− P3(y)(ẏ − y2)+ F2(y)Q3(y)]
2

= [2(py + q)(ẏ − y2)− R3(y)]
2[(ẏ − y2)2+ S4(y)] (2.46)

where

F2(y) = 3[py2+ 2qy + p−1(q2− 1)]

P3(y) = 3

[
2py3+

(
1

2
ṗ − p ṡ

s
+ 3q

)
y2+

(
q̇ − 2q

ṡ

s
+ q

2− 1

p

)
y + 1

p
qq̇

− 1

p
(q2− 1)

(
ṗ

2p
+ ṡ
s

)]
Q3(y) = 4s−2{4hpy3+ (7hq + 5µp)y2+ [8µq + 3hp−1(q2− 1)]y

+3µp−1(q2− 1)}

R3(y) = 3

[
2py3+ 6qy2+ 1

p
(qṗ − pq̇ + 5q2− 3)y + 1

p2
(q2− 1)(ṗ + q)− 1

p
qq̇

]
S4(y) = 12s−2y(hy + 2µ)[py2+ 2qy + p−1(q2− 1)].

(2.47)

3. Painlev́e V

Let v(z) be a solution of the fifth Painlevé equation, PV,

v′′ = 3v − 1

2v(v − 1)
(v′)2− 1

z
v′ + α

z2
v(v − 1)2+ β(v − 1)2

z2v
+ γ
z
v + δv(v + 1)

v − 1
. (3.1)

Equation (1.13) becomes a fifth-order polynomial inv as follows

A5v
5+ A4v

4+ A3v
3+ A2v

2+ A1v + A0 = 0 (3.2)

where

A5 = (du− a)2− 2α

z2

A4 = 2(du′ + d ′u− a′)− 3(du− a)2+ 2

z
(du− a)+ 6α

z2

A3 = 2(eu′ + e′u− b′)− 2(du′ + d ′u− a′)− (eu− b)2+ 2

z
(eu− b)

−2(du− a)
[

2(eu− b)+ (f u− c)+ 1

z

]
− 6α

z2
− 2β

z2
− 2γ

z
− 2δ (3.3)

A2 = 2(f u′ + f ′u− c′)− 2(eu′ + e′u− b′)− (eu− b)2− 2

z
(eu− b)
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−2(f u− c)
[

2(eu− b)+ (du− a)− 1

z

]
+ 2α

z2
+ 6β

z2
+ 2γ

z
− 2δ

A1 = −
[

2(f u′ + f ′u− c′)+ 3(f u− c)2+ 2

z
(f u− c)+ 6β

z2

]
A0 = (f u− c)2+ 2β

z2
.

Note that ifA5 = 0, thenA4 = 0. Therefore in order to reduce (3.2) to a quadratic equation
for v one must consider the following three cases: (1)A5 = A3 = 0, (2)A5 = 0, A3 6= 0
and (3)A5 6= 0.

Case 1.If A5 = A3 = 0, thend = e = 0. Thus one should takef 6= 0 and hence without
loss of generalityc = 0, f = 1. This givesa = α = 0 and

2b′ + b2+ 2

z
b + 2β

z2
+ 2γ

z
+ 2δ = 0. (3.4)

Let zu(z) = p(x)y(x) + µ, z = r(x) = exp[−2
∫ x 1

p(x̂)
dx̂], where p(x) = 2µx + ν,

µ = (−2β)1/2, andν is a constant such that|µ| + |ν| 6= 0. Then the quadratic equation for
v can be written as

y(y + 2µp−1)

(
1

v
− 1

)2

+ (ẏ − y2)

(
1

v
− 1

)
− 2(y2+ 2c1y + c0) = 0 (3.5)

where

c0 = 1

p2
(p2c2

1 + 2δr2) (3.6)

andc1(x) = 1
p

[µ− zb(z)] satisfies the Riccati equation

ċ1+ c2
1 + 2(γ + δr)rp−2 = 0. (3.7)

Equations (3.5) and

y = p−1[z(v′ + bv)− µ] (3.8)

give one-to-one correspondence between a solutionv(z) of PV and a solutiony(x) of the
following second-order second-degree equation:

[2(y2+ 2c1y + c0)(ÿ − 2yẏ)− (y + c1)(ẏ − y2)2− P3(y)(ẏ − y2)+Q5(y)]
2

= [(y + c1)(ẏ − y2)− R3(y)]
2[(ẏ − y2)2+ 8y(y + 2µp−1)(y2+ 2c1y + c0)]

(3.9)

where

P3(y) = 4y3+ 2(3c1− µp−1)y2− 4p−2(µpc1+ γ r)y
−2p−3[p3c3

1 + µp2c2
1 + 2(γ + δr)rpc1+ 2δ(3µ+ 2)r2]

Q5(y) = 8(y2+ 2c1y + c0)[3y
3+ (5c1+ 4µp−1)y2+ 2(3µp−1c1+ c0)y

+2µp−1c0]

R3(y) = 8y3+ 2(11c1+ µp−1)y2+ 2p−2[10p2c2
1 + 2µpc1+ 2(γ + 6δr)r]y

+2p−3[3p3c3
1 + µp2c2

1 + 2(γ + 3δr)rpc1+ 2δ(3µ+ 2)r2].

(3.10)
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Case 2.If A5 = 0, A3 6= 0, thend = 0, a = (2α)1/2

z
. If e = 0, then (3.2) cannot be reduced

to a quadratic equation inv. Let e 6= 0 and without loss of generality letb = 0, e = 1.
Then equation (3.2) can be reduced to the following quadratic equation forv:

A3v
2+ (A2− fA3)v + A1− fA2+ f 2A3 = 0 (3.11)

wheref andc satisfy the following equations

f (f + 1)(f ′ − af 2− c) = 0

(3f + 1)(c2+ f 2a2)+ 2f 2(f − 1)(ac + δ)

= (f + 1)

[
2f

(
c′ + c

z

)
− 2γ

z
f 2− 2β

z2
(f + 1)2

]
.

(3.12)

One has to consider the following three casesf = 0, f = −1 andf (f +1) 6= 0 separately.

Case 2.1. If f = 0, then equation (3.12) givesz2c2 + 2β = 0. ThusA0 = A1 = 0 and
equation (3.2) reduce to a linear equationA3v + A2 = 0 for v. Therefore one obtains the
following transformation for the PV [11]

v̄ = 1− 2(−2δ)1/2zv

zv′ − (2α)1/2v2+ [(2α)1/2− (−2β)1/2)+ (−2δ)1/2z]v + (−2β)1/2

ᾱ = − 1

16δ
{γ + (−2δ)1/2[1− (2α)1/2− (−2β)1/2]}2

β̄ = 1

16δ
{γ − (−2δ)1/2[1− (2α)1/2− (−2β)1/2]}2

γ̄ = (−2δ)1/2[(−2β)1/2− 2α)1/2] δ̄ = δ.

(3.13)

Case 2.2. If f = −1, then equation (3.12) gives(a + c)2 + 2δ = 0. Assume that
γ and δ are not both zero, and lety(x) = z(u − ν) − 1

2(4µ − 1), x =
√
z

κ
, where

µ = (2α)1/2+ 1
2, ν = (−2δ)1/2, and

κ =

(2ν)−1/2 whenν 6= 0

1

2
whenν = 0.

(3.14)

Then the quadratic equation forv can be written as follows

(y2+ 2µy + µ2+ 2β)

(
1

v
− 1

)2

+ xẏ
(

1

v
− 1

)
+ κ2x2(2νy − ν + 2γ ) = 0. (3.15)

The equations (3.15) and

y = 2zv′ + (2µ− 1)v2− (2νz+ 4µ− 1)v + 2µ

2(v − 1)
(3.16)

give one-to-one correspondence between solutionsv(z) of PV and solutionsy(x) of the
following second-order second-degree Painlevé-type equation[
ÿ − 1

2

∂Q3(y)

∂y

]2

=
[

2

x
y − x

]2

[ẏ2−Q3(y)]

Q3(y) := 4y3+ 2

ν
[ν(4µ− 1)+ 2γ ]y2+ 4

ν
[ν(µ2− µ+ 2β)+ 2µγ ]y

+2

ν
(µ2+ 2β)(2γ − ν)

(3.17)
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whenν 6= 0, and[
ÿ − 1

2

∂Q2(y)

∂y

]2

= 4

x2
y2[ẏ2−Q2(y)]

Q2(y) := 2γ (y2+ 2µy + µ2+ 2β)

(3.18)

whenν = 0. The equations (3.17) and (3.18) were obtained by Bureau [2, equations (18.6),
(20.5), p 206, 209 resp.] Note that ifγ = δ = 0, then

w = 2zv′ + (8α)1/2v2− 2[(8α)1/2+ 1]v + (8α)1/2+ 2

v − 1
(3.19)

is a solution of the following equation

zw′′ = ww′ (3.20)

which has the first integral 2zw′ = w2+ 2w +K, whereK is the integration constant.

Case 2.3.If f (f + 1) 6= 0, then equation (3.12) gives

c = f ′ − (2α)
1/2

z
f 2

f ′′ = 3f + 1

2f (f + 1)
(f ′)2− 1

z
f ′ + α

z2
f (f + 1)2+ β(f + 1)2

z2f
+ γ
z
f + δf (f − 1)

f + 1
.

(3.21)

By using the linear transformationu(z) = ξ(z)y(x) + η(z) and the change of variable
x = ζ(z), where

µ = (−2β)1/2 ξ(z) = exp

[
−
∫ z ẑf ′(ẑ)+ (µ+ 1)f (ẑ)+ µ

ẑf (ẑ)
dẑ

]
ζ(z) = −1

2

∫ z

ξ(ẑ)[f (ẑ)+ 1] dẑ η(z) = 1

zf
(zf ′ − (2α)1/2f 2+ µ)

(3.22)

one can write the quadratic equation forv as follows

φ

(φ + 1)
y(y + 2a1)

(
1

v
− 1

)2

+ (ẏ − y2)

(
1

v
− 1

)
− 2(y2+ 2c1y + c0) = 0 (3.23)

where

h(x) = 2µx + ν a1 = µ

h
|µ| + |ν| 6= 0

φ(x) := f (z) c1 = 1

ξ(f + 1)
[η(f + 1)− a − c]

c0 = c2
1 +

2δr2φ2

h2(φ + 1)2
r(x) = exp

[
− 2

∫
φ(x)

h(φ + 1)
dx

] (3.24)

and

φ̇ + 2φc1+ 2(2α)1/2

h
φ2− 2µ

h
φ = 0

ċ1+ c2
1 +

2γ rφ2

h2(φ + 1)2
+ 2δr2φ2(φ − 1)

h2(φ + 1)3
= 0.

(3.25)

Equations (3.23) and

y = 1

zξ(v + f )(zv
′ + (2α)1/2v2− zηv − µ) (3.26)
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give a one-to-one correspondence between solutionsv(z) of the PV and solutiony(x) of
the following equation:

[2(y2+ 2c1y + c0)(ÿ − 2yẏ)− (y + c1)(ẏ − y2)2− P3(y)(ẏ − y2)+Q5(y)]
2

= [(y + c1)(ẏ − y2)− R3(y)]
2[(ẏ − y2)2+ S4(y)] (3.27)

where

P3(y) = 4y3+ 2

(
3c1+ φ̇

2φ(φ + 1)
− a1

)
y2

+2

[
ċ1+ c0+ c1

(
φ̇

2φ(φ + 1)
− a1

)]
y

+ċ0+ 2c0

(
φ̇

2φ(φ + 1)
− a1

)
Q5(y) = 8φ

φ + 1
(y2+ 2c1y + c0)[3y

3+ (5c1+ 4a1)y
2+ 2(3a1c1+ c0)y + 2a1c0]

R3(y) = 4(2φ + 1)

(φ + 1)
y3+ 2

[
a1− φ̇

2φ(φ + 1)
+ (11φ + 5)

(φ + 1)
c1

]
y2

+2

[
4φ

(φ + 1)
c2

1 +
(5φ + 3)

(φ + 1)
c0− 2c1

(
φ̇

2φ(φ + 1)
− a1

)
− ċ1

]
y

−2c0

(
φ̇

2φ(φ + 1)
− a1

)
− ċ0+ 4φc0c1

φ + 1

S4(y) = 8φ

φ + 1
y(y + 2a1)(y

2+ 2c1y + c0).

(3.28)

Case 3.If A5 6= 0, then equation (3.2) can be written as

(v3+ g̃v2+ h̃v + k̃)(B2v
2+ B1v + B0) = 0 (3.29)

whereBj , j = 0, 1, 2 are functions ofu′, u, z and g̃, h̃, k̃ are functions ofz only. If k̃ = 0,
then one obtainsA0 = 0, and hencef = 0, z2c2 + 2β = 0. This implies thatA1 = 0, and
(3.2) takes the form

A5v
3+ A4v

2+ A3v + A2 = 0 (3.30)

and equation (1.11) becomes

u = v′ + bv + c
v2+ ev . (3.31)

The discrete Lie-point symmetry of PV [11]

v̄ = 1

v
ᾱ = −β β̄ = −α, γ̄ = −γ δ̄ = δ (3.32)

transform this case to case 2.
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When k̃ 6= 0, one should takeγ = 0, d 6= 0, and without loss of generalitya = 0, d =
1. The functionse, g̃, h̃, k̃ should satisfye = −(f +1), g̃ = −(f +2), h̃ = 2f +1, k̃ = −f ,
whereb, c, f are solutions of the following equations

(b + c)(f − 1) = 0 (b + c)
(
c − 1

z

)
= 0

(b + c)2+ 2δ = 0 f ′ + b(f − 1) = 0

2f

[
b′ + b

z
− bc + α

z2
f (f − 1)

]
− (f + 1)c2+ 2β

z2
(f − 1) = 0.

(3.33)

The equations (1.11) and (1.15) become

u = v′ + bv + c
(v − 1)(v − f ) B2v

2+ B1v + B0 = 0 (3.34)

where

B2 = u2− 2α

z2
B1 = 2u′ + (f − 1)u2+ 2

z
u− 2α

z2
(f − 1)

B0 = −1

f

[
f 2u2− 2cf u+ c2+ 2β

z2

]
.

(3.35)

The following two subcases (3.1)f = 1 and (3.2)f 6= 1 should be considered separately.

Case 3.1.If f = 1, then equation (3.33) givesb = 2µ
z
+ ν, c = − 2µ

z
, whereν = (−2δ)1/2,

andµ is a constant such thatν(2µ + 1) = 0. Let y(x) = −i(zu + µ), x = ln z. Then the
equations

y = zv′ + µv2+ νzv − µ
i(v − 1)2

(y2+ 2iµy − µ2+ 2α)v2− 2iẏv − (y2− 2iµy − µ2− 2β) = 0

(3.36)

give one-to-one correspondence between solutionsv(z) of PV andy(x) of the following
second-order second-degree Painlevé-type equation[
ÿ − 1

2

∂Q4(y)

∂y

]2

= −[2y − iν exp(x)]2[ẏ −Q4(y)]

Q4(y) := y4+ 2(µ2+ α − β)y2− 4iµ(α + β)y + (µ2− 2α)(µ2+ 2β).

(3.37)

Whenν = −2i equation (3.37) becomes[
ÿ − 1

2

∂Q4(y)

∂y

]2

= −4[y − exp(x)]2[ẏ −Q4(y)]

Q4(y) := y4+ 2(µ2+ α − β)y2− 4iµ(α + β)y + (µ2− 2α)(µ2+ 2β).

(3.38)

Equation (3.38) was also obtained by Bureau [2, equation (16.13), p 203] but the relation
between (3.38) and PV has not been mentioned.

Case 3.2. If f 6= 1, then (3.33) givesδ = 0, b = −c, c = f ′
f−1, andf satisfies PV with

δ = γ = 0

f ′′ = (3f − 1)

2f (f − 1)
(f ′)2− 1

z
f ′ + α

z
f (f − 1)2+ β(f − 1)2

z2f
. (3.39)
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Let u(z) = ξ(z)y(x)+ η(z), x = ζ(z), where

µ = (−2β)1/2 ξ(z) = exp

[
−
∫ z ẑf ′(ẑ)+ (µ+ 1)f (ẑ)− µ

ẑf (ẑ)
dẑ

]
ζ(z) = −1

2

∫ z

ξ(ẑ)[f (ẑ)− 1] dẑ η(z) = 1

zf (f − 1)
[zf ′ + µ(f − 1)]

(3.40)

and letφ(x) := f (z). Then the equations

y = zv′ − zηv2+ (zη + µ)v − µ
zξ(v − 1)(v − f )

(y2+ 2a1y + a0)v
2− (φ − 1)(ẏ − y2)v − φy(y + 2c1) = 0

(3.41)

where

h(x) = 2µx + ν c1 = µ

h(x)
|µ| + |ν| 6= 0

a1(x) = c1− φ̇

2φ
a0 = a2

1 −
2αφ2

h2

(3.42)

give one-to-one correspondence between solutionsv(z) of PV andy(x) of the following
second-degree equation[
ÿ − 2yẏ − 2(y − d1)(ẏ − y2)+ 1

2

∂Q4(y)

∂y

]2

= (d2y − d3)
2[(ẏ − y2)2+Q4(y)]. (3.43)

where

d1 = 1

2φ(φ − 1)
φ̇ + µ

h
d2 = 2(φ + 1)

(φ − 1)

d3 = 1

φ(φ − 1)
φ̇ − 2µ(φ + 1)

h(φ − 1)

Q4(y) = 4φy

(φ − 1)2
[y3+ 2(a1+ c1)y

2+ (a0+ 4a1c1)y + 2a0c1]

(3.44)

and the functionφ(x) satisfies the following equation

φ̈ = 3

2φ
(φ̇)2− ḣ

h
φ̇ + 4α

h2
φ3− 2µ2

h2
φ. (3.45)

4. Painlev́e VI

Let v(z) be a solution of PVI

v′′ = 1

2

(
1

v
+ 1

v − 1
+ 1

v − z
)
(v′)2−

(
1

z
+ 1

z− 1
+ 1

v − z
)
v′

+v(v − 1)(v − z)
z2(z− 1)2

(
α + βz

v2
+ γ (z− 1)

(v − 1)2
+ δz(z− 1)

(v − z)2
)

(4.1)

then, for PVI the equation (1.13) takes the form

A6v
6+ A5v

5+ A4v
4+ A3v

3+ A2v
2+ A1v + A0 = 0 (4.2)
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where

A6 = (du− a)2− 2α

z2(z− 1)2

A5 = 2(du′ + d ′u− a′)− 2(z+ 1)(du− a)2+ 2(2z− 1)

z(z− 1)
(du− a)+ 4α(z+ 1)

z2(z− 1)2

A4 = 2(eu′ + e′u− b′)− 2(z+ 1)(du′ + d ′u− a′)− (eu− b)2+ 2(2z− 1)

z(z− 1)
(eu− b)

− 2

z2(z− 1)2
[α(z2+ 4z+ 1)+ βz+ (γ + δz)(z− 1)] − (du− a)

×
[

2(z+ 1)(eu− b)+ 2(f u− c)− 3z(du− a)+ 2(z2+ 2z− 1)

z(z− 1)

]
A3 = 2(f u′ + f ′u− c′)− 2(z+ 1)(eu′ + e′u− b′)+ 2z(du′ + d ′u− a′)

+ 4

z(z− 1)2
[(α + β)(z+ 1)+ (γ + δ)(z− 1)]

−2(eu− b)
[

2(f u− c)− 2z(du− a)+ (z
2+ 2z− 1)

z(z− 1)

]
+ 2z

z− 1
(du− a)+ 2(2z− 1)

z(z− 1)
(f u− c)

A2 = 2z(eu′ + e′u− b′)− 2(z+ 1)(f u′ + f ′u− c′)+ z(eu− b)2+ 2z

z− 1
(eu− b)

− 2

z(z− 1)2
[αz+ β(z2+ 4z+ 1)+ (γ z+ δ)(z− 1)] + (f u− c)[

2(z+ 1)(eu− b)− 3(f u− c)+ 2z(du− a)− 2(z2+ 2z− 1)

z(z− 1)

]
A1 = 2z(f u′ + f ′u− c′)+ 2(z+ 1)(f u− c)2+ 2z

z− 1
(f u− c)+ 4β(z+ 1)

(z− 1)2

A0 = −z
[
(f u− c)2+ 2β

(z− 1)2

]
.

(4.3)

Note that ifA6 = 0 thenA5 = 0. Moreover, one cannot find the functionsa, b, c, d, e, f
such thatA6 = A5 = A4 = 0. Thus, to reduce (4.2) to a quadratic equation forv one may
consider the following two cases (1)A6 = 0, A4 6= 0 and (2)A6 6= 0.

Case 1. If A6 = 0, then one obtainsd = 0, a = (2α)1/2

z(z−1) . Note that whene = 0 equation
(4.2) cannot be reduced to a quadratic equation forv. Therefore one should takee 6= 0, and
hence without loss of generalityb = 0, e = 1. In this case equation (4.2) can be written as

(v + f )2(B2v
2+ B1v + B0) = 0 (4.4)

wheref andc are solutions of the following equations

f (f + 1)(f + z) = 0

[z(z− 1)(af 2+ c)+ f (f + 1)]2+ 2βz(f + 1)(f + z)+ 2γ (z− 1)f (f + z)
+(2δ − 1)z(z− 1)f (f + 1) = 0.

(4.5)

The following three subcases should be considered separately.
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Case 1.1.If f = 0, then equation (4.5) implies(z− 1)2c2+ 2β = 0. By using the change
of variable

y(x) = zu− (µ+ 1)z

2(z− 1)
− µ− 1

2(z− 1)
x = arcsin

z+ 1

z− 1
µ = (2α)1/2+ (−2β)1/2

(4.6)

one may write the quadratic equation forv as follows

A

(
z− 1

v − 1
− 1

)2

+ B
(
z− 1

v − 1
− 1

)
+ C = 0 (4.7)

where

A = y2+ 2λy + λ2− 2γ

B = −2

√
1+ sinx

1− sinx
ẏ

C = sinx + 1

sinx − 1
(y2− 2λy + λ2+ 2δ − 1)

(4.8)

andλ = 1
2[(2α)1/2− (−2β)1/2+ 1]. The second-degree equation fory(x) is[

ÿ − 1

2

∂Q4(y)

∂y

]2

= 4 tan2 x

[
y − K2

sinx

]2

[ẏ −Q4(y)]

Q4(y) := y4+ (2δ − 2γ − 2λ2− 1)y2+ 2λ(2γ + 2δ − 1)y

+(λ2− 2γ )(λ2+ 2δ − 1)

(4.9)

whereK2 = −µ2 . The equation (4.9) was obtained by Bureau [2, equation (16.12), p 202]
and also by Fokas and Ablowitz [11].

Case 1.2.If f = −1, then equation (4.5) givesz2(a + c)2 = 2γ . The quadratic equation
for v becomes

A

(
1

v
− 1

z

)2

+ B
(

1

v
− 1

z

)
+ C = 0 (4.10)

where

A = z[u2+ 2cu+ c2+ 2β

(z− 1)2
] B = 2

z− 1
[z(z− 1)u′ + zu+ za + c]

C = 1

z(z− 1)
[(z− 1)2u2− 2(z− 1)(z2a + c + 1)u+ (z2a + c + 1)2+ 2δ − 1].

(4.11)

The Lie-point symmetry of PVI [11]

v̄(z̄; ᾱ, β̄, γ̄ , δ̄) = 1− v(z;α, β, γ, δ)
z = 1− z̄ ᾱ = α β̄ = −γ γ̄ = −β δ̄ = δ (4.12)

transforms this case to the case 1.1

Case 1.3. If f = −z, then equation (4.5) gives(za + c + 1)2 = 1− 2δ. The quadratic
equation forv now may be written as

A

(
1

v
− 1

)2

+ B
(

1

v
− 1

)
+ C = 0 (4.13)
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where

A = 1

z

[
z2u2+ 2zcu+ c2+ 2β

(z− 1)2

]
B = 2

[
u′ + (2z− 1)

z(z− 1)
u+ (za + c)

z(z− 1)

]
C = −

[
(z− 1)u2+ 2(a + c)u+ (a + c)

2

z− 1
− 2γ

z2(z− 1)

]
.

(4.14)

The Lie-point symmetry of PVI [11]

v̄(z̄; ᾱ, β̄, γ̄ , δ̄) = 1− (1− z̄)v(z;α, β, γ, δ)
z = 1

1− z̄ α = ᾱ β = −γ̄ γ = −δ̄ + 1

2
δ = β̄ + 1

2

(4.15)

transforms this case to the case 1.1.

Case 2. If A6 6= 0, then to reduce equation (4.2) to a quadratic equation forv one should
taked 6= 0 and hence without loss of generality one may takea = 0, d = 1. Then equation
(4.2) can be written as

(v4+ g̃v3+ h̃v2+ k̃v + l̃)(B2v
2+ B1v + B0) = 0 (4.16)

whereBj , j = 1, 2, 3 are functions ofu′, u, z andb, c, e, f, g̃, h̃, k̃, l̃ may be chosen such
that one of the following two cases are satisfied.

(i) e = −(z + 1) f = z g̃ = −2(z + 1) h̃ = z2 + 4z + 1
k̃ = −2z(z+ 1) l̃ = z2

b = −1

2z(z− 1)
[(µ+ ν)z+ µ− ν] c = µ

z− 1
(4.17)

whereµ andν are constants such that

µ+ ν − µν = 2(γ + δ) µ2+ ν2 = 2(µ+ ν)+ 4(γ − δ) (4.18)

(ii) e = −z, g̃ = −2z, h̃ = z2, f = k̃ = l̃ = 0

(z− 1)2c2+ 2β = 0 (zb + c + 1)2+ 2δ − 1= 0. (4.19)

Case 2.1. With the choices (4.17), (4.18) equations (1.11) and (1.13) take the following
form

u = v′ + bv + c
(v − 1)(v − z) Av2+ Bv + C = 0 (4.20)

respectively, where

A = u2− 2α

z2(z− 1)2
B = 2

[
u′ + (2z− 1)

z(z− 1)
u

]
C = −

[
zu2− 2cu+ 1

z
c2+ 2β

z2(z− 1)2

]
.

(4.21)

Let y(x) = z(z− 1)u− 1
2µ, x = arcsinz+1

z−1, theny(x) is a solution of (4.9) withK2 = ν−1
2 ,

and

Q4(y) := y4+ (2β − 2α − 1
2µ

2)y2+ 2µ(α + β)y + ( 1
4µ

2− 2α)( 1
4µ

2+ 2β). (4.22)
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Using the fact that both subcases 1.1 and 2.1 give the same second-degree equation one
obtains the following new Lie-point symmetry for PVI:

v̄ = v − z
v − 1

ᾱ = γ β̄ = δ − 1
2 γ̄ = α δ̄ = β + 1

2. (4.23)

Case 2.2.In this case equations (1.11) and (1.13) respectively become

u = v′ + bv + c
v(v − z) A(v − z)2+ B(v − z)+ C = 0 (4.24)

where

A = u2− 2α

z2(z− 1)2
B = 2

[
u′ + (2z− 1)

z(z− 1)
u

]
C = (z− 1)u2+ 2(b + c)u+ (b + c)

2

z− 1
− 2γ

z2(z− 1)
.

(4.25)

The Lie-point symmetry (4.12) of PIV transforms this to case 2.1.

References

[1] Bureau F 1964Ann. Math66 1
[2] Bureau F 1972Ann. Math91 163
[3] Chazy J 1911Acta Math.34 317
[4] Cosgrove C M 1993Stud. Appl. Math.90 119
[5] Cosgrove C M 1977J. Phys. A: Math. Gen.10 1481
[6] Cosgrove C M 1977J. Phys. A: Math. Gen.10 2093
[7] Cosgrove C M 1978J. Phys. A: Math. Gen.11 2405
[8] Cosgrove C M and Scoufis G 1993Stud. Appl. Math.88 25
[9] Erugin N P 1958Dokl. Akad. Nauk. BSSR2

[10] Fokas A S and Yortsos Y C 1981Lett. Nuovo Cimento30 539
[11] Fokas A S and Ablowitz M J 1982J. Math. Phys.23 2033
[12] Fokas A S and Zhou X 1992Commun. Math. Phys.144 601
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